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ABSTRACT :

General discussion of extraction of metric information from scanner
(particularly multispectral) data is presented. Consideration is
given to: data from both aircraft and spacecraft; singly scanned
areas and areas with multiple coverage; various mathematical models
used up to the present time; and published numerical results.
Future trends are also discussed. ’

INTRODUCTION::

The emphasis in this paper is on the results from passive sensor
(particularly multispectral scanner) data, because another invited
paper is given in this Congress on active sensor data. It follows
the excellent account by Koneeny ( 12) on the geometric restitution
of remote sensing data where mathematical models, procedures, and
numerical results obtained by 1976 were given. For ease in present-
ation, one section briefly describes all models used. Then, a
separate section is devoted to the applications with satellite and
aircraft data. Another section discusses multiseries data.

BASIC MATHEMATICAL MODELS

In the metric reduction of digital image scanner data, a mathematical
model is used to represent the platform/sensor imaging character-
istiecs. All the published models can be classified into essentially
two grouvs. In the first group, a parametric model tased on the well
known collinearity condition is used. On the other hand, the second
group includes all models which are interpolative in nature. Tach
of these groups, with its individual modeling process, is discussed
in a separate section.

Parametric Models

The basis for these models is the collinearity condition that the
center point of an image element or pixel, the point representing
the instantaneous projection center, and the center point of the
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corresponding terrain resolution element, 811 lie on a straight line.
In addition to the pixel locations (corresponding to image coordinates)
and the object point coordinates, the collinearity equations usually
contain six elements of exterior orientation. Theoretically, because
the platform is continuously moving, there are six elements for each
pixel (assuming a scanner). However, because of the relatively short
time period of scanning one line of imagery, it is common to consider
only one set of six elements for each line (which makes it equivalent
to linear array scans). And even with this assumption, it is easily
seen that there would be an excesive number of exterior orientation
elements for any significant number of image lines. Since these
elements are almost always unknown a more practical avproach is used.

For each element, some function isused to mathematically model its'
behavior trend. Thus, for one element, the function selected
represents its variation with time, or equivalentlv with the "line"
number in the digital imasge. (The line number is used in a manner
similar to the use of x image coordinate in a frame photograph.)
The six elements of exterior orientation are X , Y 4 Z , which are
positional, and w,$,k which are rotational. while “theSe elements
are stochastically uncorrelated in the frame vhotography case,
there are very high correlations in scanner imagery between the w
and Y¢ parameters and ¢ and Y., parameters. In order to deal with
the correlation between w and Y., most scanners are roll stabilized,
thus constraining w to zero. Another possible solution for air-
craft scanner imagerv is the use of sidelanping data sets, in order
to make w recoverable. The ability to recover toth ¢ and Xc is
directly dependent on the terrain relief relative to the height of
the scanner above the terrain. The greater the relief differences,
the lower the correlation. Another nossibility is to record the
values of w,b, X., or Yo in flight, then apply these values during
the geometric processing. However, the most cormon procedure is to
constrain toth w and ¢ to zero during the adjustment and make

no attempt to recover their values.

2.1.1 Orbit Modeling For Images From Spacecraft

Perhaps the most direct method for functionally expressing the
exterior orientation elements for spacecraft images is to model
the vehicle motion by ideal orbit parameters. Bihr (1,?) recom-
mended the use of the six parameters of the orbit: semi-major
axis, aj; eccentricity, e; inclination of orhital plane, i; right
ascension of ascending node {i; mean anomaly, Mp; and the argument
of perigee wp. If these parameters are known, then the satellite
position ¢,\,r as well as nominal heading B, can be calculated as
functions of time. Ground points are then related to the image
points using the collinearity equations. In these, while the
rotational elements (w,p,k) of exterior orientation appear, the
positional elements are now replaced by functions of the orbital
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parameters. ©Small angle approximations are used for w,d,< thus
avoiding their trigonometric functions.

A futher improvement over the orbital modeling is effected by
Rifman et al (5’32)’where a linear senuential estimator, cr a
Kalman filter, 1s developed. It is used to estimate a 13 component
state vector from ground control noints. Twelve of theses compon-
ents are the coefficients of cubic polvnomials in time for the
sensor attitude, and one component is for attitude bias. This
sequential estimation scheme offers several advantages: (a) fewer
numbers of ground control points are required to achieve a given
performance level; (b) search areas for ground control points
become smaller in size with each state vector update, permit-

ting more rapid location of each successive point; (c) sequential
editing of control points is possible without having to process
all control points first, thus control points can he redefined

or deleted as part of the editing process.

2.1.2 Vehicle/Sensor Modeling By Polynomials

" Eachof the six exterior orientation elements can be represented
by a polynomial of a suitable order (3,9). The selected
polynomial would apply to a segment of imagery with the corre-
sponding set of coefficients. Another set of coefficients would
be calculated for the second image segment, and so on. The degree
of the polynomial depends, among other things, upon the len,;th of
the segments. One possibility is to take long segments with
higher order polynomials; another is shorter segments with linear
polynomials. The latter case seems to work tetter, at least for
aircraft MSS data ( 9 ).

The best application of the polynomial modeling is to replace the
highly non-linear collinearity equations by their differential,and

thus linear, form. Then the change in each element carried, (e.g. Y x5
d¢, etc.) is written as a polynomial in the image x-coordinate (which
is essentially equivalent to time). After substitution of these
polynomials into the pair of differential formulas and reduction two
equations are obtained, one for X and the other for Y coordinates of
the object point. When several image sections are used at the same
time, constraint equations are written at the section joints to guar-
antee uniqueness of the object coordinates.

2.1.3 Sensor 'Modeling Using Harmonics

An alternative to using polynomials is to use Fourier series expansion
for each of the exterior orientation elements. The sine and cosine
functions are usually in terms of ratios of the image coordinates and
an equivalent of a constant time interval which is appropriately chosen
for the frequency of the given data. The linearization of the harmoniec
equations requires a somewhat different procedure than that used for
the case of polynomials (12 ).

2.1.4 Autoregressive Model For Sensor
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All the models discussed so far make use of a deterministic model by
writing specific furnctions to revresent the behavior of the exterior
orientation elements. Another alternative is to regard such behavior
as stochastic rather than deterministic and employ an autoregressive
model for the purpose. Of the many possible autoregressive bprocesses,
the Gauss-!l’arkov, both first and second order, have been suggested

( 7) and applied to aircraft MSS data (98,7,.7,11,1k,15).

A Gauss-Markov process is based on the Markovian assumption that the
value of the process at any time depends only on the previous one or
two values, depending on whether a first or second order process is
assumed. Hruations relating the orientation parameters of each line
to those of the one or two preceeding lines are used to model the
sensor behavior. Control point infcrmation is included by the use of
the cifferential collinearity equations.

2.2 Interpolative Models

In the procedures employing these models no attempt is made to model
the sensor/nlatform behavior, as in the case of using the collinearity
conditions in the parametric approach. Instead, some function or
relationship is selected tetween the ¥,Y coordinates in the object
space and x,v (or row, column) in the image space, and assumed to
renresent the mapning from one space to the other. There are two
groups of methods: one in which a general transformation is used for
the entire image record (or segment thereof), and the other in which

a different function is used for each point to bhe interpolated. FEach
of these will be discussed separately.

2.2.1 Internolation Metheods "Ising General Transformation:

mhe group of nrocedures here employ a nair of functions (one for ¥,
and one for V) which holds Tor all noints in the imase. This means
that the numerical values of the coefficients in the eocuations are
the same fur each of the points of interest in the image. 3y image
we mean one segrient or record. Thus, if we are working with only
one omage segment, there will be only one set of transformation co-
efficients. IHowever, if there are more image segments (in other
words, if the image record is segmented into several sections), each
section will have a set of coefficients with different numerical
values. It is usually advisatle to enforce constraints at the borders
between successive segments.

The transformatiofisused include the following: (1) Four-parameter
transformation which is also called two-dimensional linear conformal,
Helmert, or similarity transformation; it represents a uniform scale
change, a rotation between XY and xy axes, and two shifts.

(2) Six-parameter or affine transformation, which includes two scale
changes, one rotation, skewness or non-pernendicularity of the axes,
and two shifts. (3) Fight-parameter nrojective transformation, which
represents a rotation and two shifts in each of the two planes (XY and
xy), and a tilt between the planes which is combined with scale to
produce a continuously changing scale along lines of maximum tilt,.
(k) General polynomials of varying degrees; these are usually of
higher than the first order (which would be the four-or six-parameter
transformation.) The choice of degree depends on the length of the
image segment.
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2.2.2.1 Weighted Mean

For this technique, a weight function is selected which is inversely
proportional to a function of the distance between the noint to be
interpolated and other reference points. Thus, the closer is a
reference point the more is its contribution to the interpolated value,
and vice versa. At any point of interest, the required vector (usually
calculated in two components) is obtained as the weighted mean of all
vectors at reference points surrounding the pcint. The choice of the
weight effectively determines the limit of the region within which
reference points are used to estimate at the central point of the
region.

2.2.2.2 Moving Averages

This is a generalization of the weighted mean procedure which allows
greater flexibility in point interpolation. The x- and y-components
of the interpolated vector at a point are written as functions of the
coordinates of reference points surrounding the point. Six-parameter
affine equations, or second order polynomials may be used for the
purvose. Usually a sufficient number of reference points is used to
yield an over determination, and the coefficients of the functions

are estimated by weighted least squares. As before, the weights are
evaluated from a function with the distance between the points in
question and reference points as the argument. Once these coefficients
are calculated, they are substituted tack into the function to com-
vute the desired value. It is important to note that a new set of
coefficients must be calculated for each point to be interpolated.
This usually makes the procedure computationally time consuming.
Finally, it can be seen than when the selected functions are truncated
down to only the zero order terms the procedure reduces to the weighted
mean.

2.2.2.3 Meshwise Linear

In this method, the reference points are connected into adjacent or
contiguous meshes such as triangles or quadrilaterals. The reference
points forming the mesh that includes the point to be interpolated
are used for the purpose. Usually a six-parameter affine transform-
ation is used. The method is computationally efficient within each
mesh, but the formation of the meshes may be time consuming. Also,
unless a severe condition is placed on the reference points, the
solution for points on the boundary of the image may not be accurate
due to extravolation.

2.2.2.4 Linear Least Squares Prediction

This method treats the vectors at the reference points as a random
field. The covariance function assiciated with this field is either
assumed a prior, or its shape is assumed and the numerical parameters
calculated from the data ( 13 ). As apvlied, both
stationarity and isotropv of the field are also assumed. This may be
true for some data (e.g. Satellite MSS) but not for other (e.g. air-
craft MSS). From the covariance function, the autocovariance matrix
for data at the reference points is evaluated. Also, the cross-
covariance matrix (or vector) between the point to be internolated and
the reference points is also needed. These, and the data vector at
the reference points are used to calculate the value at the point of
interest. This calculated value can be obtained using the reference
point date directly, or filtering the data for a known error pornortion.
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The amount of filtering can also be selected.
APPLICATIONS TO SPACECRAFT DATA

The most widely used svnacecraft data is that obtained from the LANDSAT
series of satellites. Because of this, the majority of work on
geometric properties of satellite data has heen expended on LANDSAT.
Interest in the Skylab conical scanner data has declined since the
termination of the Skvlab nroject.

Work on LANDSAT imagerv has been mostly concerned with 8ingle scene
processing, with some attempts at strip and Dblock triangulation.

Bahr (1,2) used LANDSAT and NIM3US imagery to compare accuracies
achieved by using a conformal transformation, second order polynomials,
the collinearity condition, and linear least squares prediction.

Borgeson ( 4 ) reported on accuracy tests of bulk corrected images
from the EROS data center, using 3,4,5 and € parameter transformations
to check residual deforamtion left after bulk processing of the imagery.

Rifman et. al.(5,?2) studied the use of a Kalman-filter-type estimator
for registration of images from LANDSAT 1 and 2, as well as for
registration of images from the same sensor.

Derouchie ( 6 ) used a strip of 11 images segments to study control
densitites necessary for various accuracy levels. His conclusion was
that the optimum spacing of control was every 100 mirror sweeps, or
600 image lines.

Little use has been made of overlapping satellite imagery. Welch and
Lo ( 23) report on the use of a 1 micrometer parallax bar combined
with a Bausch and Lomb Zoom T0O Stereoscone to obtain elevation
differences. Up to nine control points were read in each model, then
a polynomial was used to correct for systematic errors. Due to the
small scale and low base/height ratio of the imagery, accuracies of
only 200 to 300 meters were obtained.

The Skylab S-192 scanner, with its conical scan pattern, presented
special geometric problems. Murphrey, et. al. ( 18) published a

paper explaining the geometry of the scanner and giving a method for
geometric correction of the data. The suggestion was to use the
orbital parameters of the satellite in collinearity equations to deter-
mine a fifth degree polynomial to transform the image space into

object space. This polynomial is used to transform a dense grid of
image points, then the remaing points are determined by linear
interpolation due to economic considerations. WNo oredictions or

checks were made of accuracy achieved.

Malhotra(l6,17) conducted accuracy tests on the Skylab scanner imagery.
The first phase of his work involved using a parametric model and
obtained accuracies of L pixels, or about 300 meters. Another phase
involved testing the accuracy of generated film images using an
affine transformation to test for residual distortions. Accuracies
ranged from 105 to 250 meters.

APPLICATION TO ATIRCRAFT DATA

Little work is presently being done on aircraft data, due to the
widespread use of LANDSAT imagery.

At Purdue University, the research has followed the early work of
Baker and Mikhail ( 3 ). Ethridege and Mik_hail(9,1quinvestigated the
accuracy of various single strip rectification methods, including the
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ccllinearity, piecewise polynomials, weighted mean, movings average,
meshwise linear intervolation, and Causs-farkov. After testine =11
methods on four data sets, Analvsis of Variance (Anova) and Yeuman-
Keuls statistical testing procedures were used to conclude that ther
was no statistically significant di"ference between the results of t?
Test five methods, with only the meshwise linear interpclation heing
significantly worse. When the methods were ranked in terms of their
restitution results the Gauss-Markov was best, collinearity and piece-
wise polynomial were second, the weighted mean was fourth, and rnoving
averages fifth, Division of the strips into secticns whern using the
parametric methods was shown to have a significant effect. Consider-
ation of other factors involved, such as computational economv and
control requirements, led to the conclusion that the ypiecewise poiv-
romial was the optimum method.

3 (D

e

>

Tthridge also investigated the use of sidelappine~ flight lines in a
block adjustment procedure. Since no real data was available, randomly
perturred and unperturbed simulated data was used. Two algorithms

were used in the tests, one a rigorous simultaneous solution while

the other involved using the control vpoints to solve for the orient-
ation parameters, then obtaining pass point coordinates by inter-
secltions. Tre resection-intersection method gave results nearly
equivalent to those of the rigorous simulatanous method,

McGlcne, Mikhail, and Baker((',:v)reportec on futher tests with single
strip methods, comparing the piecewise polynomial, weighted mean, and
Gauss-Markov methods. The piecewise polynomial method using multiple
sections and second order rolynomials was shown to be the ontimum
method. TFurther comparison tests run on the first and second order
fauss-Markov methods showed in general no significant difference
between the two, but with the second order tending to be slightly
worse.

Ebner and HOssler ( & ) studied the use of second order fauss-Markov
processes, using simulated data. It was concluded that redundant
control within an image line did not imnrove rectification accuracy
and that the control distribution could be random as long as the
brid-ing distances were not too great. It was also concluded that
the ccrrelation time narameter of the mcecdelling vprocess could be
chosen as infinity with no effect on the results.

ADJUSTMENT OF MULTISERITS DATA

Masu and Anderson(pn,ql)renorted on the develomment of a multiseries
adjustment nrocedure. This involved the adjustment of photography

of various scales along with aircraft and snacecraft scanner data

in sequential and simultaneous nrocedures, using tie points selected

on the images, Digital tie point selection hetween *the various data
sets is also rossible. Tests with simulated data showed a 16 to 20
nercent improvement over the direct adiustment of each imare separatelyv,
Tests with real data were less cnnclusive but did show some improve-
ment.

Testswere also conducted on the block adiustment of sidelanrping data.
It wvas shown that planimetric accuracv is increased b havine rmltinle
rav intersecticns and that elevations can he obtained, alilhoush not

55 sufficient accuracy in this case Lo use for nixel elevation assien-
ment for geometric nrocessing. Tor turee strips, divided into three
sections each, the RMCT in x was 15.) meters (2.0 pixels), in Y 12.3
rmeters {1.7L pixels), and in 2 2L.N meters (Lh.LE pixels). Division
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of the strins into sections apain increased the accuracy. Calculation
of covariance information for the parameters allowed the assegsment of
correlations between the orientation parameters. The w orientation
angle was recoverable using multiple strips, while the ¢ was nol
recoverable, cdue to lack of relief of the terrain. The inclusinn of

w increased the accuracy of the adfustment.

wasu (27,70) studied the positionine of thermal IR scanner data
using a prametric orientation model. Ke revnorted residual errors at
the around control points of 3 to ! nixels in a test on a voleznic
area with larege relief differences.

Table 1

Pestitution Results from Spacecraft Nata

nunber of RMSE, Y RMAE, Y
Investigatoer data method ccntrol pts. nixels pixels
Bahr TANDSAT L_par o3k 2,71 %52
1975 bulk image D srder noly 7 1.35 R
2 BB 1.15
13 ahn 1.02
L0 .61 BT
23k n, 5L 0.G3
LB, filt-
ering after
Lh-par. 40 A EF &, 8T
L.C2. filt-
ering after
noly. I 0.53 A, TL
ATRUS-3 col. 57 0.£¢ n,8n
approx.nethod E7 n. 20 D T3
col. £l .83 £.93
apprex.method &h n.n2 n.07
col. 61 0,79 B B
approx.method 31 N, Th e 07
JIMBUS-L col. Lo n.81 7.89
approx.method ho 1.n8 1.25
Malhotra, Skylab col. - 4.0 Lo
1076 col. - L.o BT
col. - 3.7 St
RMST, Y
Meters
Borgeson LATIDSAT 3 par 152 159
System 4 par 151 130
1979 Corrected 5 par 151 e
£ par 151 il
LANDSAT 3 par 5 1€5
Tnage 4 var 53 143
5 par 53 a2l
6 par 52 Lo
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Table 2
Restitution Results for Single Coverage Aircraft Data

Data RMSE X RMSE Y RMSE XY

Investigator description Method pixels pixels pixels
Ethridge, H=1500m col. 1 sec. 1 .57 2.03 1.80
1977 IFOV=.006 rad " 2 sec. 1 .51 1.68 1.59
1550 Tines " 3 sec. 1.42 1.36 1.39
p.poly 1 sec. 1.58 2.01 1.79
2 sec. 1.51 1.69 1.60
3 sec. 1.42 1.37 1.40
W. mean 1.56 1.23 1.417
m. avg. 1.32 2.04 1.72
mesh. Tinear 1.35 2.26 1.86
G. Markov, Tst 1.18 1.44 1.32
H=1500m Col. 1 sec. 2.70 2.19 2.45
IFOV=.006 rad 2 " 2.57 1.82 2.19
1400 Tines g * 2.70 1,37 2.04
p.poly 1 sec. 2.68 2.38 2.53
2 " 2.57 2.18 2.37
3" 2.71 1.36 2.03
W. mean 3.27 1.52 2.55
M. avg. 2.74 195 2.38
mesh. linear 2.50 2.42 2.46
G. Markov, Tst 2.05 2.33 2.20
H=900m Col 1 sec. 7.33 9.66 8.58
IFQOV=,006 rad 2 " 3.69 5.17 4.49
1970 lines 3 " 2.89 3.08 2.99
p.poly 1 sec. 7,33 8.71 8.05
2 " 3.66 4.74 4.24
3 " 2.89 3.15 3.02
w. mean 3.05 4.44 3.81
m. avg. 2.62 3.91 3.33
mesh. Tinear 4.35 4.82 4.59
G. Markov, 1st 2.43 2.80 2.62
H=900m Col 1 sec. 4.10 4.24 3.90
IFOV=.006 rad 2 " 4.23 3.76 3.34
2700 Tines < 4.16 4.01 3.63
p.poly 1 sec. 4.09 4.32 4.21
2 " 4.18 3.16 3.71
3" 3.83 3.10 3.49
Ww. mean 3.75 2.91 3.36
m. avg. 5.33 3.58 4.54
mesh. linear 4.23 7.65 6.18
G. Markov 1st 3.66 3.77 3.72
McGlone, H=3050m p.poly 1 sec 1 order 2,76 4.76 4.14
Mikhail, IFOV=0025 rad ] * 2 ° 2.72 1.91 2.35
Baker 1450 Tines 2 " 1" 2.82 2.49 2.66
1980 2 " o2 " 2.23 1.74 2.00
g ™ 0 ™ 2.22 1.98 2.10
3 & Z v 2.06 1.89 1.98
w. mean 3.34 1.90 2.72
G. Markov 1 order 1.75 5.47 4.06
2 " 3.80 11.20 8.36
H=3050m p.poly 1 sec 1 order 2.14 3.85 3.11
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Table 2 [(Cent'd)

Restitution Results for Single Coveracse Alrcraft Data

ata RICT Y RMIF Y ORMOT WY

Investigator descrivtion fethod pixels pixels npixels
IFYV=.0N75 rud 1" 2,14 3.70 3.08
15280 lines BB u 2,11 3. TE 3.NA
ol 1.57 3.37 3 P

s Sl B 1.06 263 P88

et 1.60 3.59 2:.75

w, mear 3.028 3.8 2,58

T.Markov 1 order 1.123 £.RD LTS8

%) " 1.18 Tul™ %.2)]

h=215N0 pe. poly ! sec 1 order ol 2 56737 L.ns
ITOV=,0n25 rad ; Y8 v 1.71 5. 3P 3,02
15850 1ines S S 1,47 e N1 2.9

2 " 1,08 5.26 3.983

z W o3 o 1.h2 5.°2% 292

3 ¥ n @ 1.08 T3 5,31

W. mearn 2,00 4,17 2. 55

G.Markov 1 order 1.03 10,09 7.5

A 1.67 19,11 T2

h=1500 m G.Markov 1 order 1.27 1.32 1.720
IFOV=,00€ rad o 1.33 1.k0 1.h2
h=150C m G.Marvov 1 order  3.2€ 2.7 ",02
I7V=_00f rad g " Rt b e 53 3.06
h= 90N m G.artov 1 order  N,90 2.1n 1.0
TFOV=,"N6 rad o " 1.6! 2. T2 2,05
h= 9NN n n.Martov 1 order 1.09 1.80 i.0n
TPV=,006 rad s v P15 5408 L7
h= 200 m G.Marvov 1 order  3,1F 0y P 2,75
IFOV=,0AF rad g " 3.3n GRS 2.5
h= 200 n G.arkov 1 order  F,FAh .77 =, 0
IFOV=,00¢ rad oo 1L, L6 L7 1n 74
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