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ABSTRACT : 

General discussion of extraction of metric information from scanner 
(particularly multispectral) data is presented . Consideration is 
given to : data from both aircraft and spacecraft; singly scanned 
areas and areas with multiple coverage; various mathematical models 
used up to the present time ; and published numerical results . 
Future trends are also discussed . 

1 . INTRODUCTION: 

The eMphasis in this paper is on the results from passive sensor 
(particularly multispectral scanner) data , because another invited 
paper is given in this Congress on active sensor data . It follows 
the excellent account by Konecny ( 12) on the geometric restitution 
of remote sensing data where mathematical Tiodels , procP.dures , and 
numerical results obtained by 1Q7h were given . For ease in present­
ation, one section briefly describes all models used . Then , a 
separate section is devoted to the applications with satellite and 
aircraft data . Another section discusses multiseries data . 

2 . BASIC MATHEMA'l'ICAL MODELS 

In the metric reduction of digital image scanner data , a mathematical 
model is used to represent the platform/sensor imaging character­
istics . All the published models can be classified into essentially 
two groups . In the first group , a parametric model based on the well 
known collinearity condition is used . On the other hand , the second 
group includes all models which are interpolative in nature . Each 
of these groups , with it s individual modeling process , is discussed 
in a separate section . 

2 . 1 Parametric Hodels 

The basis fo r these models is the collinearity condition that the 
center point of an image element or pixel , the point representing 
the instantaneous pr oject i on center , and the center point of the 



corresponding terrain resolut i on element , all lie on a straight line . 
In addition to the pixel locations (corresponding to image coordinates) 
and the object point coordinates , the collinearity equations usually 
contain six elements of exterior or ientation . Theoretically , because 
the platform is continuously moving , there are six elements for each 
pixel (assuming a scanner) . However , because of the rPlatively short 
time period of scanning one line of imagery , it is common to consider 
only one set of six elements for each line (which makes it equivalent 
to linear array scans) . And even with this assumption , it is easily 
seen that there would he an excesive number of exterior orientation 
elements for any significant number of image lines . Since these 
elements are almost always unknown a more practical anproach is used. 

For each element , some function l s used to mathematically model its ' 
behavior trend . Thus , for one element , the function selected 
represents its variation with time , or equivalently with the " line" 
number in the digital image . (The line number is used in a manner 
similar to the use of x image coordinate in a frame photograph . ) 

The six elements of exterior orientation a r e X , Y , Z , which are 
positional, and w, ¢ ,K which are rotational . 'vEile cthe§e elements 
are stochastically uncorrelated in the frame photography case , 
there are very high correlations in scanner imap;ery between the w 
and Yc parameters and ~ and Yc .parameters . In order to deal with 
the correlation between w and Yc , most scanners are roll stabilized , 
thus constraining w to zero . Another possible solution for air­
craft scanner imagery is the use of sidelapping data sets , in order 
to make w recoverable . The ahilitv to recover both ¢ and X is 
directly dependent on the terrain r~lief relative to the hei~ht of 
the scanner above the terrain . The greater the reli~f differences, 
the lcrwer the correlation . Anot~er possibility is to record the 
values of w, d> , Xc , or Y c in flight , then appl~r these values during 
the F;eornetric processing . However , the most coi'l.r.1on procedure is to 
constrai n loth w and ¢ to zero during the adjustment and make 
no attempt to recover their values . 

2 . 1.1 Orbit Hodeling For Images From Spacecraft 

Perhaps the most direct method for functionally expressing the 
exterior orientation elements for spacecraft images i s to model 
the vehicle motion by ideal orbit parameters . B~hr (1 , 2) recom­
mended the use of the six parameters of the orbit : semi- major 
axis , a ; eccentrici ty , e ; inclination of orbital plane , i ; right 
ascension of ascending node D; mean anomaly , MT ; and the argument 
of perigee ~ · If these parameters are known , then the satellite 
position ¢ , \ , r as well as nominal heading Bn can be calculated as 
functions of time . Ground points are then related to the image 
points using the collinearity equations . In these , wh i le the 
rotational elements (w, ¢ , K) of exterior orientation anpear, the 
positional elements are now replaced by functions of the orbital 
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parameters . Small angle approximations are used for w,¢,K thus 
avoiding their trigonometric functions . 

A futher improvement over the orbital modelinp, is effectect by 
Rifman et al ( 5, 2 2),where a linear sequential estimator , or a 
Kalman filter , is developed . It is used to estimate a 13 component 
state vector from ground control points . Twelve of theses compon­
ents are the coefficients of cubic polynomials in time for the 
sensor attitude , and one component is for attituQe bias . This 
sequential estimation scheme offers several advantages : (a) fewer 
numbers of ground control points are required to achieve a given 
performance level ; (b) search areas for ground control points 
become smaller in size with each state vector update, uermit -
ting more rapid locat i on of each successive point; (c) sAquential 
editing of control points is possible without havin~ to process 
all control points first , thus control points can he redefined 
or deleted as part of the editing process . 

2 . 1 . 2 Vehicle/Sensor Modeling By Polynomials 

Each of the six exterior orientation elements can be represented 
by a polynomial of a suitable order (3,9) . ~e selected 
polynomial would apply to a segment of ima13ery with the corre­
sponding set of coefficjents . Another set of coefficients would 
be calculated for the second image se&ment , and so on . The degree 
of thepOljlllomiaJ depends, among other things , upon the leE,;th of 
the segments . One possibility is to take lonp, segments with 
higher order polynomials ; another is shorter segments with linear 
pol~·nomials. The latter case seems to work better , at least for 
a ire raft HSS data ( 9 ) • 

The best application of the polynomi al modeling is to replace t he 
hir;hly non-linear collinearity equations by their dif'ferential , and 
thus linear, form . Then the change in each element carried, (e . g . dYe , 
d¢ , etc . ) is written as a polynoni a l in the image x- coordinate (which 
is essentially equivalent to time) . After substitution of these 
polynor:1ials into the pair of differential formul a s and re rluction two 
equations are obtained , one for X and the other for Y coordinates of 
the ob j ect point . '..!hen several image sections are used at the sar.Je 
tir.Je, constraint equations are written at the section .Joints to guar­
antee uniqueness of the object coordinates . 

2 . 1 . 3 Sensor aodeling Using Harmonics 

An alternative to usinG polynomials is to use Fourier series expansion 
for each of the exterior orientation elements . The sine and cosine 
functions are usually in terms of ratios of the image coordinates and 
an equivalent of a constant time interval which is appropriately chosen 
for the frequency of the given data . '!'he linearization of the harmoni c: 
equations requires a somewhat different procedure than that used for 
the case of polynomials (12 ) . 

2 . 1 . 4 Autoregressive Model For Sensor 
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1\11 the models discussetl so far make use of a deterministic nodel by 
writin~ specific fur:ctions to renresent the behavior of the exterior 
orientation elements. Another alternative is to rer;A.rcJ such behavior 
as stochastic rA.ther than deterninistic and employ an autoregressive 
model for the purpose. Of the many possible autoregressive processes, 
the Gauss~~rkov, both first and second order, have been suggested 
( 7 ) and applied to nircraft lv!SS data ( 3, 1,_._ 'l,ll,ll.t,l5) . 

A Gauss-!•1arkov process is based on the Harkovian assumption that the 
value of the process at any time depends only on the previous one or 
two values, depenclinp: on whether a first or second order process is 
asstmled . J.;r.uations relating the orientation parameters of' each line 
to those of the one or two preceeding lines are used to model the 
sensor behavior . Control point information is included by the use of 
the differential collinearity equations. 

2.2 Internolative ~odels 

In the procedures employing these modPls no attempt is Made to model 
the sensor/nlatform behavior, as in the case of using the collinearity 
conditions i~ the parametric approach . Instead, sone function or 
relationship is selected between the X, Y coordinates in the ob,1 ect 
snace and x,v (or row, column) in t~e image space, and assumed to 
renresent the mapning from one space to the other . ~~ere are two 
groups of methods: one in which a general transformation is used for 
the entire image record (or se~ent thereof), and the other in which 
a different function is used for each point to he interpolated. ~ach 

of these will he discussed serarately. 

2.? . l InternolA.tion '1ethods TJsinp: General Transformation : 

'!'he p:roun of nrocedures "here e!".nlo~r a f'?.ir of funct i.cms (0ne f'cr X, 
m:d one for v) whj ch holds for all ;1oints in the ir'1a!';e . ':'his r:1eans 
tloat the nwneric11l values of the coefficients in the eouations are 
the sa;.rJ.e fur each of the poir!ts of interest in the image. 3y imar;e 
>re mean one segT:J.ent or record. Thus, if we are wor};ing with only 
O!l.e oMae;e see;ment, there vill 1;e only one set of transforr1ation co­
efficients . However, if there are more imae;e sef}Ilents (in other 
words, if the imae;e record is segmented into several sections), each 
section will have a set of coefficients with clif'ferent numerical 
values. It is usually advisable to enforce constraints at the borders 
between successive segments . 

~he transformationsused include the followin g: (1) Four-parameter 
transformation which is also called two-dimensional linear conformal, 
Ilelmert, or similarity transformation; it represents a uniform scale 
c~ange, a rotation between XY and xy axes, and two shifts . 
(2) Six-parameter or affine transformation, which includes t"ro scale 
changes, one rotation, skewness or non- pernendicularity of the axes, 
and two shifts . (3) Eight-par8llleter ~rejective transformation, which 
renresents a rotation and two shifts in each of the two planes (XY and 
xy), and a tilt between the planes which is combined with scale to 
produce a continuously chanr,inF scale along lines of maximum tilt. 
(l~) General polynomials of varying degrees; these are usually of 
hie;her than the first order (which would be the four- or six-parameter 
transformation . ) The choice of degree denends on the length of the 
image segment. 
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2 . 2 . 2 . 1 Weighted ~~ean 

For this technique, a weight function is selected whic~ is inversely 
proportional to a function of the distance between the point to be 
interpolated and other reference points . Thus , the closer is a 
reference point the more is its contribution to the interpolated value , 
and vice versa . At any point of interest, the required vector (usually 
calculated in two components) is obtained as the weighted mean of ~tll 
vectors at reference points surrounding the point . The choice of the 
weight effectively deterTiines the limit of the re~ion within which 
reference points are used to estimate at the central point of the 
region . 

2 . 2.? . 2 ~oving Averages 

This is a p:enerali zat:i.on of the weightec: r1ean }")rncedurf' wh:i ch ~tllm.Ts 

ereater flexibility in point interpolation . ~he x- and y-components 
of the interpolated vector at a point are written as functions of the 
coordinates of reference poin~s surrounding the point . Six- parameter 
affine equations, or second order polynomials may be used for the 
purpose . Usually a sufficient number of reference points is used to 
yield an over deternination, and the coefficients of the functions 
are estimated by weighted least squares . As before , t~e weights are 
evaluated from a function with the distance between the points in 
question and reference points as the argument. Once these coefficients 
are calculated, they are substituted back into the fm:ction to com­
pute the desired value . It is important to note that a new set of 
coefficients must be calculated for each point to be interpolated . 
This usually makes the procedure computationally time consuminc;. 
Finally, it can be seen than when the selected functions are truncated 
down to only the zero order terms the procedure reduces to the weighted 
mean . 

2 . 2.2 . 3 Meshwise Linear 

In this method, the reference points are connected into adjacent or 
contiv,uous meshes such as triangles or quadrilaterals . The reference 
points forming the mesh that includes the point to be interpolated 
are used for the purpose . Usually a six-parameter affine transform­
ation is used . The method is computationally efficient within each 
mesh , but the formation of the meshes may be time consuming . Also, 
unless a severe condition is placed on the reference points, the 
solution for points on the boundary of the image may not be accurate 
due to extrapolation . 

2 . 2 .2. 4 Linear Least Squares Prediction 

This method treats the vectors at the reference points as a rando~ 
field. The covariance function assiciated with this field is either 
assumed a prior, or its shape is assumed and the numerical parameters 
calculated from the data ( 13 ) . As applied, both 
stationarity and isotropy of the field are also assumed . This !'lay be 
true for some data (e .g. Satellite r.ms) but not for other (e .g. air­
craft HSS). From the covariance function , the autocovariance matrix 
for data at the reference points is evaluated . Also, the cross­
covariance matrix (or vector) between the noint to he interpolated and 
the reference points is also needed . These , and the data vector at 
the reference points are used to calculate the value at the point of 
interest . This calculated value can be obtained using the reference 
point data directly , or filtering the data for a known error pornortion . 

SOB. 



The a~ount of filtering can also be selected . 

3 . APPLICATIO!'JS TO SPACECRAF~ DATA 

The ~ost widely used spacecraft data is that ohtained from the LANDSAT 
series of satellites . Because of this, the Majority of work on 
p;eometric properties of satellite data has been expended on LANDSArr . 
Interest in the Skylab conicA-l scanner datA. has declined since the 
termination of the Skyla.h nroject . 

~vork on LAliJ'DSAT iJ11ar,ery has been mostly concerned vri t}: single scene 
processine;, with some attempts at strip am1 bloc}' triangulation . 

:3ahr (1,2) used LAIWSAT and HIMl3US imagery to compare accuracies 
achieved by using a conformal transformation , second order polynoMials, 
the collinearity condition , and linear least squares prediction . 

Borgeson ( 4 ) reported on accuracy tests of 1mlk corrected images 
from the EROS data center , using 3,4,5 and 6 paraMeter transformations 
to check residual deforamtion left after bulk processing of the imagery . 

Rifman et . al . (5,22) studied the use of a Kalman- filter-type estimator 
for registration of images from J .. ANDSAT l and 2, as well as for 
registration of images fro~ the same sensor. 

Derouchie ( (, ) used a strip of 11 images segments to study control 
densitites necessary for various accuracy levels . His conclusion was 
that the optimum spacing of control was every 100 mirror sweeps , or 
600 image lines . 

Little use has been made of overlapping satellite imagery . 1-lelch and 
Lo ( 23) report on the use of a 1 microMeter parallax bar combined 
with a Bausch and Lomb Zoom 70 Stereoscope to obtain elevation 
differences . Up to nine control points were read in each model, then 
a polynomial was used to correct for systematic errors . Due to the 
small scale and low base/height ratio of the imagery , accuracies of 
only 200 to 300 ~eters were obtained . 

The Skylab S- 192 scanner, with its conical scan pattern, presented 
special geometric problems . Murphrey, et . al . ( 13) published a 
paper explaining the geometry of the scanner and giving a method for 
geometric correction of the data . The suggestion was to use the 
orbital parameters of the satellite in collinearity ef}uations to deter­
mine a fifth degree polynomial to transform the iMage space into 
object space . This polynomial is used to transform a dense grid of 
image points, then the remaing points are determined by linear 
interpolation due to economic considerations . No ~redictions or 
checks were made of accuracy achieved . 

MalhotraQ6,17) conducted accuracy tests on the Skylab scanner imagery . 
The first phase of his work involved using a parametric model and 
obtained accuracies of 4 pixels , or about 300 meters . Another phase 
involved testing the accuracy of ~enerated film images using an 
affine transformation to test for residual distortions . Accuracies 
ranged from 105 to 250 meters . 

l1 . APPLICATION TO AIRCRAFT DATA 

Little work is presently being done on aircraft data , due to the 
widespread use of LANDSAT imagery . 

At Purdue Univers i ty , the research has followed the early work of 
Baker and rUkhail ( 3 ) • Ethridge and ~·Ukhai1(9,lO.lJnvestigated the 
accuracy of various single strip rectification methods , including the 
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ccllinearit~.r, riecevise polynonials, '.·reig'"lt~d. nean, mavi n;:: a·Jcrn.p:e, 
r.Jest:wise l incar internolation, and Gauss-'(arY::ov. .'\ ~ter tcstinrr ··d 1 
!"'.ethods on four data sets, Anl'!.lysi~ of H:triance c~.nova) anrl :·re~an­
I(euls statistical testinr procedures ~·rere user1 to conclude that there 
was no stati::;tically significant di :'ference bchreen the results of t::e 
h:st five oc~"hod:;, crith only the meshwise linear interrelation heinr: 
significantly 1mrse . 'tlhen the methods were ranked in terms of t11eir 
restitution results the Gauss -1··~ar};ov was best, collineari ty and piece­
wise polynonial v.•ere second, the weighted mea.'1 was fourth, and novinp; 
averaces fifth. 1ivision of tl:e strips into secticns wher. using the 
paranetric net hods was shmm to have a sir;ni fie ant ef<'cct. Con!>i<ler­
ation of other factors involved, suet as computational economy and 
control requirements, led to the conclusion that the piecewise pol:v­
r.omial was the optimum metl,od. 

::-'thr:i dge also investigated the use of siC.elanpi!lrr fl is;ht lines in a 
bloc'r: adjustment procedure. Since no real data ,.ras available, randomly 
pert1.:.rled and unperturbed simulate<'l da-t·.a "~>ras used . ~vo al f,<H"i t!uns 
were used in the tests, one a rirorous simultaneous solution while 
the other involved using the control ~oints to solve for the orient-
at ion parameters, then obtaining pas::; poi1:t coordinates by inter­
sections. 'lf.e r P sect:ion-inter~ection MethoJ gave rPsu.l ts nearl ~r 

equivalent to those of the rigorous simulatanous method. 

~1c;;J.cne, :vfikhail, and Ea}er(1' 1 ,::_r.)reported on futher tests vit:r. sinp;le 
strip :T!.F>thods' comparhtp; t1:e riecewise rolynomial' ,.;eighted mean, and 
Ga•1ss-:-1arkov methods . ':'he piecewise polynomial method usint-: multiple 
sections and second order r-ol~rnomial s w'is shmm to be the nnti"lum 
metl1od. .?urther comparison tests ru:1 on the first and second orr1er 
Gauss-~arkov methods showed in general no signi~icant difference 
between the two, but with the second order tending to be slightly 
worse. 

E1)ner and Hossler ( 2 ) studied the use of second orr1r:r r.auss-r~arkov 
processes, usine; simulated c1ata. It was concluded that redundant 
control "~>ri thin an ima~e line did not imnrove rectification [lccuracy 
and that the control distribution could be random as lonr. n.s the 
brid~ing distances were not too p;reat. It was also concluded that 
the ccrrelation time naraJ'leter of the modelling nrocess could be 
chosen as infinity with no effect on the results . 

5. AD,TUS':'I'-1E~T'T' OF ~--fl!LTISERES DATA 

"Ta~u and Anderson(?0,:?J_ )renor~;ed on the r1P.velonnent of a rmltiseries 
adjustment ~rocedu.re. ':'his involved the adJustment of -photor;raph~' 
of various scales along w~th aircraft and s~acecraft scanner data 
in sequential and simultaneous nrocedures , using tie points selected 
on the images . Digital tie -point selection between the various data 
sets is also r.ossible. Tests vrith siMulated data s~10v1er1 a 1() to 20 
')1ercent improve!"!ent over the direct a 'l,~ustment of each ir.ar;~ separately , 
Tests with real d.ata vere less c0ncl usiv~ hut did shm·r some innrove­
ment. 

Testsvere also cond1Jdnd. or: the blor1: ad ,~ustment of' sid.el8-=-'Dinr datil. 
It 1-M.S shmm that pl'lnimetric A.CCllr<tc :·' is irwreasprl b r rll'l,'.ri.'Jr" 1"'11\ltinJp 
rgv intersections and th11t elevations can 1-,e o11t<dned, £11 t:10ur> not 
-; :: sufficier~t R.ccurr-.c:r il : this ca~;e tc use !'or r;ixe]. el evation assign­
T"lellL for r:eol'letric !)rocessing. ?or t iJl'ee strjps, divided into tl!ree 
sections eacl1, t:1e ::;Hs:: in x was 15 . 1

• raeters (2 . 0 pixPls) , in Y 13 .~ 
meters (1.7l pixels), and in: 3L , n neters (I1 . Lr nixels) . nivision 

5:10. 



of the str ·~1 1s i:-1to sections a1rain in~rPased the accurac;.r. ::'alculation 
of covariancP information for thf' !Yt.!"'L~eters alloweu ~-}le assessnent of 
correlations bet,,een the orientation r~arameters. The ul orientation 
anvle was recoverable usin~ multiple strips, while th~ ¢ was not 
re2C;Vera.ble, Jue to l&.d: o~ relief of the terrain. T~1e inclusi•m of 
w increase1 t~e accuracy of the ad~ustment. 

:;asu (2'1,:'')) studieu the positioninr: of themaJ IT< scanner date. 
us:in~ a pra.."letric orientat:ior: model. Ee renorted residual errors at 
the :cround control points of 3 to It r1ixels in a test on a vo:canic 
area with lar~e relie: Jifferences. 

Table l 

Pestitution ~esults fror:; f'pacecraft Dntn. 

Tnvestipntor data 

3ahr ~A~rDflA~ 

197~ bul~ !~a~c 
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1Q79 
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Corrected 

LA!TDSAT 
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~r>thld 
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;-' :)rJer noly 

:.,.s. filt-
ering after 
l1-par. 
L. ~. fil t­
erinp; aftt>r 
~Joly. 

col. 
aTJprox.~:J.ethocJ 

col. 
arprox .methou 
col. 
approx .method 
col. 
ap;;rox.methoc1 
col. 
col. 
col. 

3 par 
ll par 
5 par 
(, par 
") rar ...) 

)+ uar 
r. par ..' 

6 par 

5~~. 

nu.':lber of 
control nts. 

'">1) · 
......... t 

7 
l 

ll 
l:n 

231: 

ho 

151 
151 
1 Sl 
151 

53 
53 
53 
C"") 
) _, 

"1MS:P., 
"ixels 

?. 71 
1. 2) 

"· (,~ 
n. {n 

nJJ 
0.54 

11 r[ 

0 .53 
o.(f 
o.3SJ 
" o-, ' .... i..)..) 

n.~2 

n.7n 
n. 71~ 
0.A1 
l.:l8 
l~ • () 
h.o 
3. 7 

'! 

R'~S:?, ':':'~ 
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51 

1(5 
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:,~ "-+ 
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'- ' • I.. J.) 

~"~.7C 
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Table 2 
Restitut i on Results for Si ng l e Coverage Aircraft Data 

Data RMSE X RMSE Y RMSE XV 
Investigator descri~t i on Method ~ i xe l s ~ i xe l s ~ixe l s 

Ethri dge, H=l500m col . 1 sec . 1.57 2 .03 1.80 
1977 I FOV=. 006 rad II 2 sec . 1. 51 1.68 1. 59 

1550 l in es II 3 sec . 1.42 1. 36 1 . 39 
p. po1y 1 sec . 1.58 2 . 01 1. 79 

2 sec . 1. 51 1.69 1.60 
3 sec. 1 . 42 1.37 1. 40 

w. mean 1.56 1.23 1.41 
m. avg . 1 . 32 2 .04 1.72 
mesh. linear 1. 35 2 .26 1.86 
G. Markov, l st 1 . 18 1. 44 1. 32 

H=l500m Col. 1 sec . 2.70 2 .1 9 2 . 45 
IFOV=.006 rad 2 II 2. 57 1.82 2 .1 9 

1400 1 i nes 3 II 2.70 1. 37 2. 04 
p. po l y 1 sec . 2 .68 2 . 38 2 . 53 

2 II 2. 57 2 .1 8 2 . 37 
3 II 2 . 71 1. 36 2 .03 

w. mean 3. 27 1 . 52 2 . 55 
M. avg . 2.74 1. 95 2. 38 
mesh . 1 i near 2 . 50 2 . 42 2 . 46 
G. Markov, 1st 2 . 05 2 . 33 2.20 

H=900m Col 1 sec . 7. 33 9.66 8 . 58 
IFOV= .006 rad 2 II 3.69 5 .17 4 . 49 

1970 lines 3 II 2. 89 3.08 2 .99 
p .poly 1 sec. 7.33 8 . 71 8 . 05 

2 II 3.66 4 . 74 4 . 24 
3 II 2 .89 3 .1 5 3.02 

w. mean 3.05 4.44 3 . 81 
m. avg . 2.62 3. 91 3. 33 
mesh. linear 4 . 35 4.82 4 . 59 
G. Markov, lst 2 . 43 2 .80 2.62 

H=900m Col 1 sec . 4.1 0 4.24 3.90 
I FOV=. 006 rad 2 II 4 .23 3.76 3.34 

2700 lines 3 II 4 .1 6 4 .01 3.63 
p.poly 1 sec . 4 .09 4. 32 4 . 21 

2 II 4.18 3.16 3. 71 
3 II 3.83 3.1 0 3 . 49 

w. mean 3. 75 2 . 91 3 . 36 
m. avg. 5 . 33 3. 58 4.54 
mesh . 1 i near 4.23 7.65 6 .1 8 
G. Markov lst 3.66 3 .77 3. 72 

McGlone, H=3050m p.poly l sec 1 order 2. 76 4.76 4.14 
Mi kha i 1 , I FOV=0025 rad 1 II 2 II 2. 72 1. 91 2. 35 
Baker 1450 lines 2 II 1 II 2.82 2 .49 2 .66 
1980 2 II 2 II 2.23 1. 74 2 .00 

3 II 1 II 2.22 l. 98 2 .1 0 
3 II 2 II 2.06 1 . 89 l. 98 

w. mean 3.34 l. 90 2. 72 
G. Markov 1 order l. 75 5 . 47 4.06 

2 II 3.80 11 . 20 8 . 36 
H=3050m p.poly 1 sec 1 order 2.1 4 3.85 3.11 
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